A Regularized Conditional GAN for Posterior Sampling in Image Recovery Problems

Matthew Bendel, Rizwan Ahmad, and Philip Schniter Supported by NIH grant R01EB029957

Image Inverse Problems

Goal: Recover image \boldsymbol{x} from measurements $\boldsymbol{y} = \mathcal{M}(\boldsymbol{x})$:

- $\blacksquare \mathcal{M}(\cdot)$ masks, distorts, and/or corrupts \boldsymbol{x} with noise.
- Solution typically posed as finding single best recovery \widehat{x} , known as "point-estimation" [1]

Challenges with point-estimation:

- Inability to navigate the perception-distortion tradeoff [2]
- Inability to quantify reconstruction uncertainty
- Problems with fairness in \widehat{x}

Solution: Sample from posterior distribution $p_{x|y}(\boldsymbol{x}|\boldsymbol{y}) = -$

Existing approaches:

- Conditional VAEs [3, 4], conditional NFs [5, 6], conditional GANs [7, 8]
- Langevin [9] / Diffusion [10, 11] methods

Our contribution

Our approach: A novel regularized conditional Wasserstein GAN

- Generator outputs $\widehat{x}_i = G_{\theta}(z_i, y)$ for code realization $z_i \sim \mathcal{N}(\mathbf{0}, I)$
- Discriminator D_{ϕ} aims to distinguish true pair $(\boldsymbol{x}, \boldsymbol{y})$ from fake pair $(\widehat{\boldsymbol{x}}_i, \boldsymbol{y})$
- We jointly train networks G_{θ} and D_{ϕ} via

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \left\{ \mathbb{E}_{\mathbf{x}, \mathbf{z}, \mathbf{y}} \{ D_{\boldsymbol{\phi}}(\boldsymbol{x}, \boldsymbol{y}) - D_{\boldsymbol{\phi}}(G_{\boldsymbol{\theta}}(\boldsymbol{z}, \boldsymbol{y}), \boldsymbol{y}) \} + \mathcal{R}(\boldsymbol{\theta}) - \mathcal{L}_{gp}(\boldsymbol{\phi}) \right\}$$

Proposed regularization:

Regularization based on a supervised-L1 penalty & standard-deviation reward:

$$\mathcal{R}(\boldsymbol{\theta}) \triangleq \underbrace{\mathbb{E}_{\mathbf{x}, \mathbf{z}_{1}, \dots, \mathbf{z}_{P}, \mathbf{y}} \left\{ \|\boldsymbol{x} - \widehat{\boldsymbol{x}}_{(P)}\|_{1} \right\}}_{\triangleq \mathcal{L}_{1, P}(\boldsymbol{\theta})} - \beta_{\mathsf{std}} \underbrace{\sum_{i=1}^{P} \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{P}, \mathbf{y}}}_{\triangleq \mathcal{L}_{\mathsf{std}, P}(\boldsymbol{\theta})}$$

where $\widehat{\boldsymbol{x}}_{(P)} = \frac{1}{P} \sum_{i=1}^{P} \widehat{\boldsymbol{x}}_{i}$ is the average of P posterior samples

In the simple Gaussian case where $\hat{x}_i = \mu + \sigma z_i$ with $z_i \sim \mathcal{N}(0, 1)$, $\boldsymbol{\theta} = [\mu, \sigma]$, and true $p_{x|y}(\cdot|y) = \mathcal{N}(\mu_0, \sigma_0)$, we prove recovery of the correct posterior, e.g.,

yields

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \left\{ \mathcal{L}_{1,P}(\boldsymbol{\theta}) - \beta_{\mathsf{std}} \mathcal{L}_{\mathsf{std},P}(\boldsymbol{\theta}) \right\}$$
$$\widehat{\boldsymbol{\theta}} = \left[\mu_0, \sigma_0 \right]$$

for any $P \ge 2$ when $\beta_{std} = \frac{1}{P} \sqrt{\frac{1}{(P-1)(P+1)}} \triangleq \beta_{std}^{\mathcal{N}}$ We also

e also prove the failure of L2/variance-based regularizations, e.g.,

$$\widetilde{\mathcal{R}}(\boldsymbol{\theta}) \triangleq \underbrace{\mathbb{E}_{\mathbf{x}, \mathbf{z}_{1}, \dots, \mathbf{z}_{P}, \mathbf{y}} \left\{ \|\boldsymbol{x} - \widehat{\boldsymbol{x}}_{(P)}\|_{2}^{2} \right\}}_{\triangleq \mathcal{L}_{2, P}(\boldsymbol{\theta})} - \beta_{\mathsf{var}} \underbrace{\sum_{i=1}^{P} \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{P}, \mathbf{y}} \left\{ \|\widehat{\boldsymbol{x}}_{i} - \widehat{\boldsymbol{x}}_{(P)}\|_{2}^{2} \right\}}_{\triangleq \mathcal{L}_{\mathsf{var}, P}(\boldsymbol{\theta})}$$

L2 alone induces mode collapse & L2/variance can't recover posterior variance:

To tune β_{std} , we first establish that, for *true* posterior samples $\{\widehat{x}_i\}$, we have $\mathcal{E}_P \triangleq \mathbb{E}\{\|\widehat{\boldsymbol{x}}_{(P)} - \boldsymbol{x}\|_2^2 | \boldsymbol{y}\} = \frac{P+1}{P} \mathcal{E}_{\mathsf{mmse}} \text{ and so } \frac{\mathcal{E}_P}{\mathcal{E}_1} = \frac{P+1}{2P}$ Experimentally, we observe that $\mathcal{E}_P/\mathcal{E}_1$ grows with β_{std} (see red curves below): $\beta_{\text{std}} = 1.2\beta_{\text{std}}^{\mathcal{N}}$ $\beta_{\text{std}} = 1.4\beta_{\text{std}}^{\mathcal{N}}$ $\beta_{\text{std}} = 1.6\beta_{\text{std}}^{\mathcal{N}}$ Number of averaged outputs, P, on a log sca • We adapt β_{std} so that validation $\widehat{\mathcal{E}}_P/\widehat{\mathcal{E}}_1$ matches theoretical $\mathcal{E}_P/\mathcal{E}_1$ at P=8:

 $\beta_{\mathsf{std}} \leftarrow \beta_{\mathsf{std}} + \mu_{\mathsf{std}} \left(\left[\frac{P+1}{2P} \right]_{\mathsf{dB}} - \left[\frac{\widehat{\mathcal{E}}_P}{\widehat{\mathcal{E}}_1} \right]_{\mathsf{dB}} \right)$

Quantifying performance using CFID

We quantify posterior-approximation accuracy using Conditional FID [12]: **1** Here the goal is to compute the conditional Wasserstein-2 distance $\text{CWD} \triangleq \mathbb{E}_{\mathbf{y}} \left\{ W_2(p_{\mathbf{x}|\mathbf{y}}(\cdot, \mathbf{y}), p_{\widehat{\mathbf{x}}|\mathbf{y}}(\cdot, \mathbf{y})) \right\}$

- \mathbf{z} $(\boldsymbol{x}, \widehat{\boldsymbol{x}})$ are replaced by Inception-v3 or VGG-16 embeddings $(\underline{\boldsymbol{x}}, \widehat{\boldsymbol{x}})$, like in FID

 $\operatorname{CFID} \triangleq \mathbb{E}_{\mathsf{y}} \left\{ \|\boldsymbol{\mu}_{\mathsf{x}|\mathsf{y}} - \boldsymbol{\mu}_{\widehat{\mathsf{x}}|\mathsf{y}} \|_{2}^{2} + \operatorname{tr} \left[\boldsymbol{\Sigma}_{\underline{\mathsf{xx}}|\mathsf{y}} + \boldsymbol{\Sigma}_{\underline{\widehat{\mathsf{xx}}}|\mathsf{y}} - 2 \left(\boldsymbol{\Sigma}_{\mathbf{xx}|\mathsf{y}}^{1/2} \boldsymbol{\Sigma}_{\underline{\widehat{\mathsf{xx}}}|\mathsf{y}} \boldsymbol{\Sigma}_{\underline{\mathsf{xx}}|\mathsf{y}}^{1/2} \right)^{1/2} \right] \right\}$

Accelerated MRI reconstruction results

We reconstructed fastMRI [13] multicoil T2 brain data at acceleration R = 8

Model	CFID↓	FID↓	PSNR*↑	SSIM*↑	LPIPS*↓	DISTS*↓	Time (4)↓
E2E-VarNet [14]	7.82	8.40	36.49	0.9220	0.0575	0.1253	316ms
Langevin-Jalal [15]	7.34	14.32	33.90	0.9137	0.0579	0.1086	14 min
cGAN-Adler [8]	10.10	10.77	33.51	0.9111	0.0614	0.1252	217 ms
cGAN-Ohayon [16]	6.04	11.05	34.92	0.9222	0.0532	0.1128	217 ms
cGAN-Ours	4.87	7.72	35.42	0.9257	0.0379	0.0877	217 ms

• Metrics with * are reported for the optimal averaging constant PcGAN-Ohayon cGAN-Ours

Posterior samples from our cGAN show meaningful variations (see arrows) Posterior samples from cGAN-Ohayon (i.e., L2 alone) show no variation Posterior samples from cGAN-Adler and Langevin-Jalal show unwanted visual artifacts

 $p_{\mathsf{y}|\mathsf{x}}(\boldsymbol{y}|\boldsymbol{x})p_{\mathsf{x}}(\boldsymbol{x})$ $\int p_{\mathsf{y}|\mathsf{x}}(\boldsymbol{y}|\boldsymbol{x}) p_{\mathsf{x}}(\overline{\boldsymbol{x}}) \,\mathrm{d}\boldsymbol{x}$

 $\widehat{oldsymbol{x}}_i - \widehat{oldsymbol{x}}_{(P)} \|_1 ig\}_i$

THE OHIO STATE UNIVERSITY

) for some
$$\mu_{\text{std}} > 0$$

3 $p_{\underline{x}|y} \& p_{\underline{\widehat{x}}|y}$ approximated by $\mathcal{N}(\boldsymbol{\mu}_{x|y}, \boldsymbol{\Sigma}_{\underline{xx}|y}) \& \mathcal{N}(\boldsymbol{\mu}_{\widehat{x}|y}, \boldsymbol{\Sigma}_{\underline{\widehat{xx}}|y})$, like in FID, giving

Langevin-Jalal

cGAN-Adler

Navigating the perception-distortion tradeoff

There's a fundamental tradeoff [2] between the perceptual quality (PQ) and distortion on $\widehat{m{x}}$

- **Distortion**: Any distance between \widehat{x} and the true x

Posterior samplers can navigate this tradeoff by averaging P samples!

PSNR: LPIPS:

32.32 0.0418 better PQ \leftarrow

Large-scale image completion results

We inpainted a centered 128x128 square on 256x256 CelebA-HQ faces

Model Score-SDE [10 CoModGAN cGAN (ours)

The cGANs generated samples 13000x faster than Score-SDE! Our approach produces samples which are both high quality and diverse

References

1] 2]	E. L. Lehmann and G. Casella, <i>Theory of Point Estimation</i> Y. Blau and T. Michaeli, "The perception-distortion trade
3]	K. Sohn, H. Lee, and X. Yan, "Learning structured output
4]	F. Tonolini, J. Radford, A. Turpin, D. Faccio, and R. Mur
5	C. Winkler, D. Worrall, E. Hoogeboom, and M. Welling,
6	L. Ardizzone, C. Lüth, J. Kruse, C. Rother, and U. Köthe
7]	P. Isola, JY. Zhu, T. Zhou, and A. A. Efros "Image-to-ii
8]	J. Adler and O. Öktem, "Deep Bayesian inversion," arXiv
9]	Y. Song and S. Ermon, "Improved techniques for training
10]	Y.Song, J.Sohl-Dickstein, D.P.Kingma, A.Kumar, S.Ermon
11]	H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and JC
12]	M. Soloveitchik, T. Diskin, E. Morin, and A. Wiesel, "Cor
13]	J. Zbontar et al., "fastMRI: An open dataset and benchm
14]	A. Sriram et al., "End-to-end variational networks for account
15]	A. Jalal, M. Arvinte, G. Daras, E. Price, A. Dimakis, and
16]	G. Ohayon, T. Adrai, G. Vaksman, M. Elad, and P. Milan
17]	S.Zhao, J.Cui, Y.Sheng, Y.Dong, X.Liang, E.I.Chang, Y.X

37th Conference on Neural Information Processing Systems December 2023

PQ: Any distance between \widehat{x} and manifold of "clean" images

33.67

0.0379

34.53 0.0421

35.42 0.0539 \longrightarrow better dist

	CFID↓	FID↓	Time	e (128)↓
D]	5.11	7.92	48 m	in
17]	5.29	8.50	217	ms
	4.69	7.45	217	ms

ion. Springer Science & Business Media, 2006.

rray-Smith, "Variational inference for computational imaging inverse problems," JMLR 2020. "Learning likelihoods with conditional normalizing flows," arXiv preprint arXiv:1912.00042, 2019.

, "Guided image generation with conditional invertible neural networks," arXiv:1907.02392, 2019. mage translation with conditional adversarial networks," CVPR 2017.

v:1811.05910, 2018.

score-based generative models," NeurIPS 2020.

n, B.Poole, "Score-based generative modeling through stochastic differential equations," ICLR 2021. . Ye, "Diffusion posterior sampling for general noisy inverse problems," ICLR 2023.

nditional Frechet inception distance," arXiv:2103.11521, 2021.

narks for accelerated MRI," arXiv:1811.08839, 2018.

celerated MRI reconstruction," MICCAI 2020.

J. Tamir, "Robust compressed sensing MRI with deep generative priors," NeurIPS 2021. nfar, "High perceptual quality image denoising with a posterior sampling CGAN," ICCVW 2021. Xu, "Large scale image completion via co-modulated generative adversarial networks," ICLR 2021

leoff," CVPR, 2018.

ut representation using deep conditional generative models," NeurIPS 2015.